

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATH. DATA SCI. c\bigcirc 2020 Society for Industrial and Applied Mathematics
Vol. 2, No. 1, pp. 1--23

Layer-Parallel Training of Deep Residual Neural Networks\ast

Stefanie G\"unther\dagger , Lars Ruthotto\ddagger , Jacob B. Schroder\S , Eric C. Cyr\P , and

Nicolas R. Gauger\dagger

Abstract. Residual neural networks (ResNets) are a promising class of deep neural networks that have shown
excellent performance for a number of learning tasks, e.g., image classification and recognition. Math-
ematically, ResNet architectures can be interpreted as forward Euler discretizations of a nonlinear
initial value problem whose time-dependent control variables represent the weights of the neural
network. Hence, training a ResNet can be cast as an optimal control problem of the associated
dynamical system. For similar time-dependent optimal control problems arising in engineering ap-
plications, parallel-in-time methods have shown notable improvements in scalability. This paper
demonstrates the use of those techniques for efficient and effective training of ResNets. The pro-
posed algorithms replace the classical (sequential) forward and backward propagation through the
network layers with a parallel nonlinear multigrid iteration applied to the layer domain. This adds
a new dimension of parallelism across layers that is attractive when training very deep networks.
From this basic idea, we derive multiple layer-parallel methods. The most efficient version employs a
simultaneous optimization approach where updates to the network parameters are based on inexact
gradient information in order to speed up the training process. Using numerical examples from
supervised classification, we demonstrate that the new approach achieves a training performance
similar to that of traditional methods, but enables layer-parallelism and thus provides speedup over
layer-serial methods through greater concurrency.

Key words. deep learning, residual networks, supervised learning, optimal control, layer-parallelization, parallel-
in-time, simultaneous optimization

AMS subject classifications. 49K15, 68T01, 68W10

DOI. 10.1137/19M1247620

\ast Received by the editors March 7, 2019; accepted for publication (in revised form) September 30, 2019; published
electronically February 6, 2020.

https://doi.org/10.1137/19M1247620
Funding: The work of the second author was supported by the U.S. National Science Foundation awards DMS

1522599 and DMS 1751636. The work of the fourth author was supported by Sandia National Laboratories. Sandia
National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective
technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy or the United States Government.

\dagger Scientific Computing Group, TU Kaiserslautern, Kaiserslautern 67663, Germany (stefanie.guenther@scicomp.
uni-kl.de, nicolas.gauger@scicomp.uni-kl.de).

\ddagger Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322 (lruthotto@
emory.edu).

\S Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131
(jbschroder@unm.edu).

\P Computational Mathematics Department, Sandia National Laboratories, Albuquerque, NM 87185-1320 (eccyr@
sandia.gov).

1

D
ow

nl
oa

de
d

06
/0

9/
20

 to
 1

36
.5

5.
43

.1
76

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/19M1247620
mailto:stefanie.guenther@scicomp.uni-kl.de
mailto:stefanie.guenther@scicomp.uni-kl.de
mailto:nicolas.gauger@scicomp.uni-kl.de
mailto:lruthotto@emory.edu
mailto:lruthotto@emory.edu
mailto:jbschroder@unm.edu
mailto:eccyr@sandia.gov
mailto:eccyr@sandia.gov

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2 G\"UNTHER, RUTHOTTO, SCHRODER, CYR, AND GAUGER

1. Introduction. One of the most promising areas in artificial intelligence is deep learning,
a form of machine learning that uses neural networks containing many hidden layers [4, 45].
Deep neural networks (DNNs) and, in particular, deep residual networks (ResNets) [37], have
been breaking human records in various contests and are now central to technologies such as
image recognition [39, 44, 45] and natural language processing [6, 15, 42].

The abstract goal of machine learning is to model a function f : Rn\times Rp \rightarrow Rm and train
its parameter \bfittheta \in Rp such that

(1.1) f(y,\bfittheta) \approx c

for input-output pairs (y, c) from a certain data set \scrY \times \scrC . Depending on the nature of the
inputs and outputs, the task can be regression or classification. When outputs are available for
all samples, or parts of the samples, or when they are not available, this formulation describes
supervised, semisupervised, and unsupervised learning, respectively. The function f can be
thought of as an interpolation or approximation function.

In deep learning, the function f involves a DNN that aims at transforming the input
data using many layers. The layers successively apply affine transformations and element-
wise nonlinearities that are parametrized by the network parameters \bfittheta . The training problem
consists of finding the parameters \bfittheta such that (1.1) is satisfied for data elements from a
training data set but also holds for previously unseen data from a validation data set, which
has not been used during training. The former objective is commonly modeled as an expected
loss, and optimization techniques are used to find the parameters that minimize the loss.

Despite rapid methodological developments, compute times for training state-of-the-art
DNNs can still be prohibitive, measured in the order of hours or days, involving hundreds
or even thousands of layers and millions or billions of network parameters [16, 43]. There is
thus a great interest in increasing parallelism to reduce training runtimes. The most common
approach involves data-parallelism, where elements of the training data set are distributed onto
multiple compute units. Synchronous and asynchronous data-parallel training algorithms have
been developed to coordinate the network parameter updates [40, 1]. Another approach is
referred to as model-parallelism, which aims at partitioning different layers of the network
and its parameters to different compute units. Model-parallelism has traditionally been used
when the network dimension exceeds available memory of a single compute unit. Often, a
combination of both approaches is employed [36, 16].

However, none of the above approaches to parallelism tackles the scalability barrier created
by the intrinsically serial propagation of data through the network itself. In either of the above
approaches, each subsequent layer can process accurate information only after the previous
layer has finished its computation. As a result, training runtimes typically scale linearly with
the number of layers. As current state-of-the-art networks tend to increase complexity by
adding more and more layers (see, e.g., the ResNet-1001 with 1001 layers and 10.2 million
weights in [38]), the serial layer propagation creates a serious bottleneck for fast and scalable
training algorithms seeking to leverage modern high-performance computing (HPC) facilities.

In this paper, we address the above scalability barrier by introducing concurrency across
the network layers. To this end, we replace the serial data propagation through the network
layers with a nonlinear multigrid method that treats layers, or layer chunks, simultaneously
and thus enables full layer-parallelism. Our goal is to have a training methodology thatD

ow
nl

oa
de

d
06

/0
9/

20
 to

 1
36

.5
5.

43
.1

76
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LAYER-PARALLEL TRAINING OF DEEP RESNETS 3

is scalable in the number of layers, e.g., doubling the number of layers and the number of
compute resources should result in a nearly constant runtime. To achieve this, we leverage
recent advances in parallel-in-time integration methods for unsteady differential equations.1

The forward propagation through a ResNet can be seen as a discretization of a time-
dependent ordinary differential equation (ODE), which was first observed in [34, 18, 35].
Interpreting the network propagation as a nonlinear dynamical system has since attracted
increasing attention (see, e.g., [48] and references therein, or [14]).

Based on this interpretation, we employ a multigrid reduction in time (MGRIT) approach
[19] that divides the time domain---which, in this interpretation, corresponds to the layer
domain---into multiple time chunks that can be processed in parallel on different compute
units. Coupling of the chunks is achieved through a coarse-grid correction scheme that propa-
gates information across chunk interfaces on a coarser time- (i.e., layer-) grid. The method can
be interpreted as a parallelization of the model, processing layer chunks simultaneously within
the iterative multigrid scheme, thus breaking the traditional layer-serial propagation. At con-
vergence, the iterative multigrid scheme solves the same problem as a layer-serial method, and
thus it can be utilized in any common gradient-based optimization technique to update the
network parameters, such as stochastic gradient descent (SGD) or other batch approaches,
without loss of accuracy. Further, it can be applied in addition to any data-parallelism across
the data set elements, thus multiplying data-parallel runtime speedup. Runtime speedup
over traditional layer-serial methods is achieved through the new dimension of parallelization
across layers, enabling greater concurrency.

The addition of layer-parallelism allows for ResNets to take advantage of large machines
currently programmed with message-passing style parallelism. The use of such large machines
in conjunction with a multilevel training algorithm scalable in the number of layers opens the
door to training networks with thousands, or possibly even millions, of layers. We demonstrate
the feasibility of such an approach by using the parallel-in-time package XBraid [53] with a
ResNet on large clusters. Additionally, the nonintrusive approach of XBraid would allow for
any node-level optimizations (such as those utilizing GPUs) to be used.

The iterative nature of the multigrid approach further enables the use of simultaneous
optimization algorithms for training the network. Simultaneous optimization methods have
been widely used for optimization problems that are constrained by partial differential equa-
tions (PDEs), where they show promise for reducing the runtime overhead of the optimization
when compared to a pure simulation of the underlying PDE (see, e.g., [7, 54, 5] and references
therein). They aim at solving the optimization problem in an all-at-once fashion, updating the
optimization parameters simultaneously while solving for the time-dependent system state.
Here, we apply the one-shot method [9, 33] to solve the training problem simultaneously for
the network state and parameters. In this approach, network parameter updates are based
on inexact gradient information resulting from early stopping of the layer-parallel multigrid
iteration.

The paper is structured as follows. Section 2 gives an introduction to the deep learning op-
timization problem and its interpretation as an optimal control problem. Further, it discusses

1For an introduction and overview on various parallel-in-time integration schemes for unsteady differential
equations, we refer the reader to the review paper [22] and to more recent developments, such as [23, 29].D

ow
nl

oa
de

d
06

/0
9/

20
 to

 1
36

.5
5.

43
.1

76
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4 G\"UNTHER, RUTHOTTO, SCHRODER, CYR, AND GAUGER

numerical discretization of the optimal control problem and summarizes necessary conditions
for optimality. Section 3 introduces the layer-parallel multigrid approach replacing the forward
and backward propagation through the network. Section 4 focuses on the integration of the
layer-parallel multigrid scheme into a simultaneous optimization algorithm. Numerical results
demonstrating the feasibility and runtime benefits of the proposed layer-parallel scheme are
presented in section 5.

2. Deep learning as a dynamic optimal control problem. In this section, we present
an optimal control formulation of a supervised classification problem using a deep residual
network. Limiting the discussion to this specific task allows us to provide a self-contained
mathematical description. We note that the layer-parallel approach can be extended to other
learning tasks, e.g., semisupervised learning, autoregression, or recurrent learning; see [28, 2]
for a general introduction and a comprehensive overview of deep learning techniques.

2.1. Optimal control formulation. In supervised classification, the given data set consists
of s feature, or example, vectors y1,y2, . . . ,ys \in Rnf and associated class probability vectors
c1, c2, . . . , cs \in \Delta nc , where \Delta nc denotes the unit simplex in Rnc , and nf , nc \in N denote the
number of features and classes in the given data set, respectively. The jth component of ck
represents the probability of example yk belonging to the jth class. The learning problem
aims at training a network and its classifier that approximate the feature-to-class mapping for
all data elements.

A powerful class of networks are residual neural networks (ResNets) [37]. In an abstract
form, the network transformation to a generic input data example y using an N -layer ResNet
can be written as

(2.1) un+1 = un + hF (un,\bfittheta n) for n = 0, 1, . . . , N - 1, with u0 = L\mathrm{i}\mathrm{n}y,

with un \in Rq, q being the network width. The transformations in F typically consist of affine
linear and elementwise nonlinear transformations that are parametrized by the entries in the
layer weights \bfittheta 0, . . . , \bfittheta N - 1 \in Rd, respectively. For simplicity, we consider the single-layer
perceptron model

(2.2) F (u, \bfittheta) = \sigma (K(\bfittheta (1))u+B\bfittheta (2)),

where \sigma : R\rightarrow R is a nonlinear activation function that is applied componentwise, e.g., \sigma (x) =
tanh(x) or \sigma (x) = max\{ x, 0\} . Here, each weight vector \bfittheta \in \{ \bfittheta 0, . . . , \bfittheta N - 1\} is partitioned into
one part that defines a linear operator K\in Rq\times q and another part that represents coefficients
of a bias with respect to columns of the given matrix B\in Rq\times nb (e.g., nb = 1 and B = eq,
a vector of all ones, to add a constant shift to all features). In this work, we assume that
the linear operators K(\cdot) either are dense matrices or correspond to convolutional operators
(see [46]) parametrized by \bfittheta (1), whose entries we determine in the training. However, our
method can be extended to other parametrizations (e.g., the layer used in [37], which features
two affine transformations, or the layer based on an antisymmetric matrix suggested in [34]).
WhileK(\cdot) needs to be a square matrix, we use a nonsquare model for the operator L\mathrm{i}\mathrm{n}\in Rq\times nf

to map the data set elements to the network width.D
ow

nl
oa

de
d

06
/0

9/
20

 to
 1

36
.5

5.
43

.1
76

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LAYER-PARALLEL TRAINING OF DEEP RESNETS 5

Considering a small but positive h in (2.1), it is intuitive to interpret the ResNet propa-
gation (2.1) as a forward Euler discretization of the initial value problem

(2.3) \partial tu(t) = F (u(t), \bfittheta (t)), t \in [0, T], with u(0) = L\mathrm{i}\mathrm{n}y.

In this formulation, t is an artificial time that refers to the propagation of the input features
through the neural network, going from the input layer with u(0) to the network output u(T)
being the solution of the initial value problem evaluated at some final time T . In contrast to
the discrete ResNet propagation, the dynamical system continuously transforms the network
state u(t) by prescribing its time-derivative with the vector field F , whose parameters \bfittheta (t)
will be learned during training.

In order to classify the network output into a specific class, a hypothesis function is required
that predicts the class probabilities. Here, we limit ourselves to multinomial regression models,
which are common in deep learning. To this end, we consider the softmax hypothesis function
given by

(2.4) S(u(T),W,\bfitmu) =
1

e\top nc
exp(z)

exp(z), z = Wu(T) + \bfitmu ,

where enc \in Rnc is a vector of all ones, exp is the exponential function applied elementwise,
and W \in Rnc\times q, \bfitmu \in Rnc denote a weight matrix and a bias vector, both of whose entries
need to be learned in training alongside the network parameters \bfittheta (t).

The performance of the network transformation and classification can then be measured
by comparing the predicted class probabilities to the given ones in c. To this end, we use the
cross entropy loss function

\ell (u(T), c,W,\bfitmu) = - c\top log(S(u(T),W,\bfitmu)).(2.5)

The training problem consists of minimizing the average cross entropy loss function over
many examples with respect to \bfittheta (t),W, and \bfitmu . It can thus be cast as the following continuous-
in-time optimal control problem:

min
1

s

s\sum
k=1

\ell (uk(T), ck,W,\bfitmu) +

\int T

0
R(\bfittheta (t),W,\bfitmu) dt(2.6)

subject to \partial tuk(t) = F (uk(t), \bfittheta (t)) \forall t \in [0, T],(2.7)

uk(0) = L\mathrm{i}\mathrm{n}yk \forall k = 1, . . . , s.(2.8)

The optimal control problem aims at finding control variables \bfittheta (t) (the network weights) and
corresponding state variables uk(t) (the network states) that minimize the objective function,
while satisfying the constraints (2.7)--(2.8) (the network dynamics) for all data set elements k =
1, . . . , s. The objective function consists of the empirical cross entropy loss function evaluated
at the final time T , and an additional regularization term denoted by R. In conventional deep
learning approaches, R typically applies a Tikhonov regularization penalizing ``large"" network
and classification parameters, measured in a chosen norm. Within the time-continuous optimal
control interpretation, we additionally penalize the time-derivative of \bfittheta (t) in order to ensure
weights that vary smoothly in time. This is an important ingredient for stability analysis [34].D

ow
nl

oa
de

d
06

/0
9/

20
 to

 1
36

.5
5.

43
.1

76
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

6 G\"UNTHER, RUTHOTTO, SCHRODER, CYR, AND GAUGER

2.2. Discretization of the optimal control problem. We solve the time-continuous op-
timal control problem in a first-discretize-then-optimize fashion. We discretize the control
\bfittheta (t) and the states u(t) at regularly spaced time points tn = n \cdot h, where h = T/N and
n = 0, 1, . . . , N . In this setting, each discrete state un and control \bfittheta n corresponds to the nth
layer of the network. This leads to the discrete control problem

min
1

s

s\sum
k=1

\ell (uN
k , ck,W,\bfitmu) +

N - 1\sum
n=0

R(\bfittheta n,W,\bfitmu)(2.9)

subject to un+1
k = \Phi (un

k ,\bfittheta
n) \forall n = 0, . . . , N - 1,(2.10)

u0
k = L\mathrm{i}\mathrm{n}yk \forall k \in 1, . . . , s.(2.11)

In this general description, \Phi can denote any layer-to-layer propagator which maps data un

to the next layer. In the case of a forward Euler discretization, it reads

(2.12) \Phi (un,\bfittheta n) = un + hF (un,\bfittheta n),

giving the ResNet propagation as in (2.1). However, the time-continuous interpretation of the
network propagation permits to employ other, possibly more stable, discretization schemes of
the initial value problem (2.3) (see [34]) and thus opens the door to new network architecture
designs. It also allows for discretization of the controls and states at different time points,
which can improve the efficiency and will be the subject of future research. Further, numerical
advances for solving the corresponding optimal control problem can be leveraged, such as the
time-parallel approach, which is discussed in this paper.

2.3. Necessary optimality conditions. The necessary conditions for optimality of the
discrete, equality-constrained optimization problem (2.9)--(2.11) can be derived from the as-
sociated Lagrangian function

L :=J +
s\sum

k=1

\Biggl[
N - 1\sum
n=0

\bigl(
\=un+1
k

\bigr) T \bigl(
\Phi (un

k ,\bfittheta
n) - un+1

k

\bigr)
+

\bigl(
\=u0
k

\bigr) T \bigl(
L\mathrm{i}\mathrm{n}yk - u0

k

\bigr) \Biggr]
,(2.13)

where J denotes the objective function in (2.9) and \=un
k are called adjoint variables for layer

n = 0, . . . , N and example k = 1, . . . , s. Optimal points of the problem are saddle points of
the Lagrangian function (see, e.g., [49]); thus equating its partial derivatives with respect to
all state, adjoint, and control variables to zero yields the following necessary conditions for
optimality:

1. State equations

un+1
k = \Phi (un

k ,\bfittheta
n) \forall n = 0, . . . , N - 1,(2.14)

with u0
k = L\mathrm{i}\mathrm{n}yk \forall k = 1, . . . , s.(2.15)

2. Adjoint equations

\=un
k = (\partial \bfu \Phi (u

n
k ,\bfittheta

n))T \=un+1
k \forall n = 0, . . . , N - 1,(2.16)

with \=uN
k =

1

s

\bigl(
\partial \bfu \ell (u

N
k , ck,W,\bfitmu)

\bigr) T \forall k = 1, . . . , s.(2.17)

D
ow

nl
oa

de
d

06
/0

9/
20

 to
 1

36
.5

5.
43

.1
76

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LAYER-PARALLEL TRAINING OF DEEP RESNETS 7

3. Design equations

0 =

s\sum
k=1

(\partial \bfittheta n\Phi (un
k ,\bfittheta

n))T \=un+1
k + (\partial \bfittheta nR)T \forall n = 0, . . . , N - 1(2.18)

0 =
1

s

s\sum
k=1

\bigl(
\partial \bfW ,\bfitmu \ell (u

N
k , ck,W,\bfitmu)

\bigr) T
+ (\partial \bfW ,\bfitmu R)T .(2.19)

Here, subscripts denote partial derivatives, \partial x = \partial
\partial x . Training a residual network corresponds

to the attempt of solving the above set of equations for the special choice of \Phi being the forward
Euler time-integration scheme. However, the above equations, as well as the discussions in
the remainder of this paper, are general, in the sense that any other layer-to-layer propagator
\Phi can be utilized that corresponds to the discretization of the dynamical system (2.3).

The state equations correspond to the forward propagation of input examples yk through
the network layers. The adjoint equations propagate partial derivatives with respect to the
network states backward through the network layers, starting from a terminal condition at
N equal to the local derivative of the loss function. In a time-continuous setting, the adjoint
equations correspond to the discretization of an additional adjoint dynamical system for prop-
agating network state derivatives backward in time.2 We note that solving the above adjoint
equations backward in time is equivalent to the backpropagation method that is established
within the deep learning community for computing the network gradient [46]. It further corre-
sponds to the reverse mode of automatic differentiation [30]. The adjoint variables are utilized
in the right-hand side of the design equations, which then form the so-called reduced gradient.
For feasible state and adjoint variables, the reduced gradient holds the total derivative, i.e.,
the sensitivity, of the objective function with respect to the controls. It is thus used within
gradient-based optimization methods for updating the network controls.

3. Layer-parallel multigrid approach. In order to achieve concurrency across all of the
network layers, we replace the sequential propagation through the residual network (forward
and backward) with an iterative multigrid scheme.

Based on the time-continuous nonlinear ODE interpretation of ResNets as in (2.3), and its
time-discretization as in (2.10)--(2.11), we employ the MGRIT [19] method to parallelize across
the time domain of the network. While the discussion in this section revolves around time
grids, here each time point is considered a layer in the network. Thus, the multigrid approach
constructs a multilevel hierarchy, where each level is a network containing fewer layers (i.e.,
fewer time points). The coarsest level will contain only a handful of layers, while the finest
level could contain thousands of layers (or more). When run in parallel, each compute unit
will own only a few fine-grid layers, thus allowing for massive parallelism to be applied to the
learning algorithm.

The MGRIT scheme was introduced in [19] and first applied to neural networks in [50],
although that work considered parallelism over epochs of the training algorithm, rather than
over layers. We refer the reader to the works [19, 20, 32] for the details of the method, but
here we provide a self-contained overview of the MGRIT scheme.

2The adjoint approach is a common and well-established method in optimal control that provides gradient
information at computational costs that are independent of the design space dimension; see, e.g., [26]D

ow
nl

oa
de

d
06

/0
9/

20
 to

 1
36

.5
5.

43
.1

76
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

8 G\"UNTHER, RUTHOTTO, SCHRODER, CYR, AND GAUGER

3.1. Multigrid across layers for forward propagation. Consider the network states to be
collected in a vector U = (u0,u1, . . . ,uN). The forward propagation through the network
(2.14)--(2.15) can then be written as the space-time system

A(U, \bfittheta) :=

\left(
u0

u1 - \Phi (u0,\bfittheta 0)
...

uN - \Phi (uN - 1,\bfittheta N - 1)

\right) =

\left(
L\mathrm{i}\mathrm{n}y
0
...
0

\right) =: G,(3.1)

where each block row corresponds to a time step, which in turn corresponds to a layer in the
network. Here, the un denote the network states at each time step for either a single generic
input vector y or for a batch, i.e., a subset, of input vectors yk, k \in \scrS \subset \{ 1, . . . , s\} .

Sequential time-stepping solves (3.1) through forward substitution, i.e., forward propaga-
tion of input data through the network layers. In contrast, MGRIT solves (3.1) iteratively,
beginning with some initial solution guess for U, by using the full approximation storage (FAS)
nonlinear multigrid method [11]; see section 3.1.1. In both cases, the exact same equations
are solved, and thus the same solution is reached (in the case of MGRIT, to within a user
tolerance). Regarding cost, sequential time-stepping is O(N) but sequential. Instead, MGRIT
solves this system with an O(N) multigrid method with a larger computational constant but
with parallelism in the layer dimension. This parallelism allows for a distributed workload,
processing multiple layers in parallel on multiple compute units. Typically, a certain number
of processors is needed for MGRIT to show a speedup over layer-serial forward propagation.
This is referred to as the cross-over point. However, the speedups observed can be large;
e.g., the work [33] showed a speedup of 19\times for a model optimization problem while using an
additional 256 processors in time.

3.1.1. MGRIT using full approximation scheme. Similar to linear multigrid methods,
the nonlinear FAS method computes coarse-grid error corrections to fine-grid approximations
of the solution. Each iteration of the nonlinear MGRIT scheme consists of three steps. First,
a relaxation scheme is employed to cheaply compute an approximation to the true solution
on the fine grid. Second, the current error is approximated on a coarser grid by solving a
coarse-grid residual equation. Third, the interpolated coarse-grid error approximation is used
to correct the current fine-grid solution approximation. This idea is based on the fact that
low frequency error components can be reduced with relaxation much faster on coarser grids.
While a general introduction to linear and nonlinear multigrid methods can be found in [12],
here we explain each of the algorithmic components of MGRIT, starting with the coarse-grid
residual equation.

Let U denote an approximation to the true solution U\ast of (3.1) such that U\ast = U + E,
with E denoting the current error. Then this error can be expressed in terms of the residual
R as

R := G - A(U, \bfittheta) = A(U\ast ,\bfittheta) - A(U, \bfittheta)(3.2)

= A(U+E,\bfittheta) - A(U, \bfittheta).(3.3)

In a multigrid setting, the residual equation (3.3) is solved on a coarser grid such that an
approximation to the error E can be computed more cheaply than on the fine grid. InD

ow
nl

oa
de

d
06

/0
9/

20
 to

 1
36

.5
5.

43
.1

76
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LAYER-PARALLEL TRAINING OF DEEP RESNETS 9

t0 t1 t2 t3
...

tc

T0 T1 . . . TN/c : C-point
(fine and coarse grid)

: F-point
(fine grid only)

h\Delta = ch

h

Figure 1. Fine grid (ti) and coarse grid (Tj) for coarsening factor c = 5. MGRIT eliminates the fine
points (black vertical lines, F-points) to yield a coarse level composed of the red circles (C-points).

linear cases, i.e., when A is linear in U, the residual equation reduces to AE = R and
thus can be solved for the error E directly. In the nonlinear case, the residual equation
A(V,\bfittheta) = A(U, \bfittheta) +R is solved for V on the coarse grid before the error can be extracted
with E = V - U.

For a given time-grid discretization tn = nh, n = 0, . . . , N, and h = T/N , the coarse grid
is defined by choosing a coarsening factor c > 1 and assigning every cth time point to the next
coarser time grid with Tn = nh\Delta , n = 0, . . . , N\Delta = N/c, and coarse-grid spacing h\Delta = ch. An
example of two grid levels using a coarsening factor of c = 5 is given in Figure 1. The residual
R, as well as the current approximation U and controls \bfittheta , are restricted to the coarse grid
with injection by choosing every cth time point; i.e., the restriction of U is

(3.4) U\Delta = (u0
\Delta ,u

1
\Delta , . . . ,u

N\Delta
\Delta), where un

\Delta = unc,

with R\Delta , \bfittheta \Delta defined analogously. Consequently, the residual equation that is to be solved on
the coarse grid reads

A\Delta (V\Delta ,\bfittheta \Delta) = A\Delta (U\Delta ,\bfittheta \Delta) +R\Delta .(3.5)

Here, A\Delta denotes a rediscretization of A on the coarse grid utilizing a coarse-grid propagator
\Phi \Delta , i.e.,

A\Delta (U\Delta ,\bfittheta \Delta) :=

\left(
u0
\Delta

u1
\Delta - \Phi \Delta (u

0
\Delta ,\bfittheta

0
\Delta)

...

uN\Delta
\Delta - \Phi \Delta (u

N\Delta - 1
\Delta ,\bfittheta N\Delta - 1

\Delta)

\right) .(3.6)

An obvious choice for \Phi \Delta is a rediscretization of the problem on the coarse grid, such as by
using the same propagator as that used on the fine grid, but with a bigger time step size
h\Delta = ch, thus skipping the fine-grid time points and updating only the coarse-grid points.
For instance, \Phi could be a forward or backward Euler discretization with time-step size h,
and \Phi \Delta could be a forward or backward Euler discretization with time step size h\Delta = ch.3 In

3In general, the time-grid hierarchy and the corresponding coarse-grid operator \Phi \Delta should be chosen such
that stability of the time-stepping method on each coarse time grid is ensured. In this work, the chosen
hierarchy encountered no stability issues on coarse time grids for the chosen time-stepping method. In fact,
we never observed stability issues, even on very coarse time grids. However, a more thorough treatment of
stability for ResNets and MGRIT is beneficial and will be the topic of future research.D

ow
nl

oa
de

d
06

/0
9/

20
 to

 1
36

.5
5.

43
.1

76
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

10 G\"UNTHER, RUTHOTTO, SCHRODER, CYR, AND GAUGER

F-relaxation

\Phi \Phi \Phi \Phi \Phi \Phi \Phi \Phi

C-relaxation

\Phi \Phi

Figure 2. F-relaxation and C-relaxation for a coarsening by a factor of c = 5.

the case of forward Euler (i.e., ResNet architecture), the coarse-grid propagator \Phi \Delta is given
by

\Phi \Delta (u
n
\Delta ,\bfittheta

n
\Delta) = un

\Delta + h\Delta F (un
\Delta ,\bfittheta

n
\Delta).(3.7)

On the coarse grid, residual equation (3.5) is solved exactly with forward substitution.
Afterward, the error approximation on the coarse grid is extracted with E\Delta = V\Delta - U\Delta .
This coarse-grid error approximation is then used to correct the fine-grid approximation U at
coarse-grid points with Unc \leftarrow Unc +En

\Delta .
Complementing the coarse time-grid error correction is the fine-grid relaxation process.

Here, block Jacobi relaxation alternates between the fine-grid and the coarse-grid points. More
precisely, relaxation on the fine points (called F-relaxation) corresponds to updating each fine
point concurrently over each time chunk interval, thus propagating each coarse point value
ukc through the corresponding fine point interval (T k, T k+1) as in

un \leftarrow \Phi (un - 1,\bfittheta n - 1) for each n = kc+ 1, kc+ 2, . . . , (k + 1)c - 1.(3.8)

Importantly, each kth interval of fine points can be computed independently in parallel. Re-
laxation on the coarse points (called C-relaxation) is analogous and updates each coarse point
concurrently by propagating the nearest left neighboring value. For the kth coarse point, the
update is given by

ukc \leftarrow \Phi (ukc - 1,\bfittheta kc - 1) for k = 1, 2, . . . , N\Delta .(3.9)

The actions of F- and C-relaxations are described in Figure 2. Unless otherwise noted, we
use FCF-relaxation, which is an application of F-relaxation (3.8), followed by an application
of C-relaxation (3.9), and then F-relaxation (3.8) again. We note that such F/C orderings in
relaxation are common for multigrid methods.

Taken together, the coarse-grid error correction and the fine-grid relaxation form the two-
grid MGRIT cycle depicted in Algorithm 3.1.4 Typically, the MGRIT Algorithm 3.1 is carried
out recursively, with successively coarser time grids, until a coarsest time grid of trivial size
is reached, and step 3 is solved exactly using forward substitution. If the levels are traversed
in order, going down to the coarsest time grid and then back up to the finest time grid, this
is called a V-cycle. It corresponds to the ``Solve"" in step 3 being implemented as a single

4The F-relaxation two-grid version of nonlinear MGRIT is equivalent to the Parareal algorithm [24].D
ow

nl
oa

de
d

06
/0

9/
20

 to
 1

36
.5

5.
43

.1
76

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LAYER-PARALLEL TRAINING OF DEEP RESNETS 11

recursive call. However, more powerful cycles can be applied that visit coarse time grids more
frequently (such as F-cycles; see, e.g., [51, 12] for more information on multigrid cycling).

Note that the main work carried out on a given time grid is the parallel relaxation process.
Thus the work on each MGRIT level is highly parallel. Only when a coarsest time grid of trivial
size is reached is the level solved sequentially by forward substitution. Thus, the algorithm
simultaneously computes all time steps in parallel, reducing the serial propagation component
to the size of the coarsest grid plus the traversal through each level.

Algorithm 3.1. MGRIT(A, U, \bfittheta , G) for two grid levels.

1: Apply F- or FCF-relaxation to A(U, \bfittheta) = G \triangleleft eq. (3.8)--(3.9)
2: Restrict the fine-grid approximation and residual R to the coarse grid:

Ui
\Delta \leftarrow Uic,Ri

\Delta \leftarrow (G - A(U, \bfittheta))ic for i = 0, . . . , N\Delta

3: Solve A\Delta (V\Delta ,\bfittheta \Delta) = A\Delta (U\Delta ,\bfittheta \Delta) +R\Delta . \triangleleft eq. (3.5)
4: Compute the coarse-grid error approximation: E\Delta = V\Delta - U\Delta .
5: Correct U:

Uic \leftarrow Uic +Eic
\Delta for i = 0, . . . , N\Delta , and apply F-relaxation

6: If \| R\| \leq tol: halt.
Else: go to step 1.

The MGRIT iterations can be mathematically considered a fixed-point method for solving
the forward problem (2.14)--(2.15). Using the iteration index m, it reads

(3.10) for m = 0, 1, . . . : Um+1 = MGRIT(A,Um,\bfittheta ,G).

The MGRIT iterator has been shown to be a contraction in many settings for linear, nonlinear,
parabolic, and hyperbolic problems, although hyperbolic problems tend to be more difficult
(e.g., [17, 19, 33, 21]). Upon convergence, the limit fixed-point U = MGRIT(A,U,\bfittheta ,G) will
satisfy the discrete network state equations as in (2.14)--(2.15), since MGRIT solves the same
underlying problem.

Before starting the multigrid iterations, an initial solution guess for U must be set. Typ-
ically, the coarse-grid points are initialized using the best current solution estimate. This is
often either some generic initial condition or an interpolated solution from a cheaper, coarser
time grid.

3.2. Multigrid across layers for backpropagation. The same nonlinear multigrid scheme
as described in section 3.1 can also be utilized to solve the adjoint equations (2.16)--(2.17)
in layer-parallel. The adjoint equations are linear in the adjoint variables \=un, and those are
propagated backward through the network. The adjoint space-time system thus reads

(3.11)

\left(
I

 - (\partial \bfu \Phi N - 1)T I
 - (\partial \bfu \Phi N - 2)T I

. . .
. . .

 - (\partial \bfu \Phi 0)T I

\right)
\underbrace{} \underbrace{}

=:A\bfU (\=\bfU ,\bfittheta)

\left(
\=uN

\=uN - 1

...
\=u1

\=u0

\right) =

\left(
1
s (\partial \bfu N \ell N)T

0
...
0

\right)
\underbrace{} \underbrace{}

=:\bfG \bfU

,

D
ow

nl
oa

de
d

06
/0

9/
20

 to
 1

36
.5

5.
43

.1
76

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

12 G\"UNTHER, RUTHOTTO, SCHRODER, CYR, AND GAUGER

where again \=un denotes the adjoint variable at layer n for a general example y or for a
batch of examples yk, k \in \scrS \subset \{ 1, . . . , s\} . Further, (\partial \bfu \Phi

n)T denotes the partial derivative

\partial \bfu \Phi (u
n,\bfittheta n)T=

\Bigl(
\partial \bfu n+1

\partial \bfu n

\Bigr) T
. It corresponds to the backward layer propagation of adjoint sen-

sitivities, which in the case of a forward Euler discretization for \Phi (i.e., ResNet architecture)
reads

\partial \bfu \Phi (u
n,\bfittheta n)T \=un+1 = \=un+1 + h\partial \bfu F (un,\bfittheta n)T \=un+1.(3.12)

Each backward propagator at layer n depends on the primal state un, and hence the system
matrix and right-hand side of (3.11) depend on the current state U, which is reflected in the
subscripts in A\bfU and G\bfU . The structure of the adjoint system (3.11), however, is the same as
that of the state system (3.1). Hence the same MGRIT approach as presented in Algorithm
3.1 can be utilized to solve the adjoint equations with the layer-parallel multigrid scheme by
applying the iteration

\=Um+1 = MGRIT(A\bfU , \=Um,\bfittheta ,G\bfU)(3.13)

for the adjoint vector \=U := (\=uN , . . . , \=u0).

Remark 3.1. The adjoint equations depend on the primal states un
k . Therefore, those

states need to be either stored during forward propagation or recomputed while solving
the adjoint equations. Hybrid approaches, such as the check-pointing method, have been
developed and compromise memory consumption with computational complexity (see, e.g.,
[52]). Memory-free methods using reversible networks were first proposed for general dynam-
ics in [27]. However, as shown in [13], not all architectures that are algebraically reversible are
numerically forward and backward stable. This motivates limiting the forward propagation
to stable dynamics, e.g., dynamics inspired by hyperbolic systems.

3.3. Nonintrusive implementation. The MGRIT algorithm relies on the action of the
layer-to-layer forward and backward propagators, \Phi and \partial \bfu \Phi

T , and their respective redis-
cretizations, \Phi \Delta and \partial \bfu \Phi

T
\Delta , on coarser grid levels. However, it does not access or ``know""

the internals of these functions. Hence, MGRIT can be applied in a fully nonintrusive way
with respect to any existing discretization of the nonlinear dynamics describing the network
forward and backward propagation. A user can wrap existing sequential evolution operators
according to an MGRIT software interface, and then the MGRIT code iteratively computes
the solution to (2.14)--(2.15) and (2.16)--(2.17) in parallel.

Our chosen MGRIT implementation for time-parallel computations (forward and back-
ward) is XBraid [53]. One particular advantage of XBraid is its generic and flexible user-
interface that requires relatively straightforward user-routines (which likely already exist),
such as how to take inner-products and norms with vectors un, how to take a time step with
\Phi and \partial \bfu \Phi

T , etc.
Since the user defines the action of \Phi , any existing implementation of layer computations

can continue to be used, including accelerator code, e.g., for GPUs. However, since \Phi takes
a single time step, any use of GPU kernels for \Phi implies memory movement to and from the
CPU at every time step. This is because current architectures largely rely on the CPU to
handle the message-passing layer of parallelism, and it is over this layer that XBraid providesD

ow
nl

oa
de

d
06

/0
9/

20
 to

 1
36

.5
5.

43
.1

76
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LAYER-PARALLEL TRAINING OF DEEP RESNETS 13

temporal parallelism. However, future implementations could move the message-passing layer
to occur solely on the GPU, thus removing this memory movement overhead. Additionally,
the bandwidth and latency between CPUs and accelerators will continue to improve, also
ameliorating this issue.

Remark 3.2. The state and adjoint MGRIT iterations recover at convergence the same
reduced gradient as that of a layer-serial forward and backward propagation through the net-
work. Thus they can be integrated into any gradient-based training algorithm for updating
the network control parameters \bfittheta ,W,\bfitmu . Subgradient methods, such as SGD or other batch
approaches, can also be utilized by choosing the corresponding subset \scrS \subset \{ 1, . . . , s\} . Regard-
ing speedup and parallelism, the layer-parallel computations are particularly attractive in the
small-batch mode when options for data parallelism are limited. Overall, we expect a runtime
speedup through the greater concurrency within state and adjoint solves, if the computational
resources are large enough.

4. Simultaneous layer-parallel training. The iterative nature of the layer-parallel multi-
grid scheme allows for a simultaneous training approach that solves the network state and
adjoint equations inexactly during training. To this end, we reduce the accuracy of the state
and adjoint MGRIT solver during training and update the network control parameters uti-
lizing inexact gradient information. This corresponds to an early stopping of the MGRIT
iterations in each outer optimization cycle. The theoretical background of this early-stopping
approach of the inner state and adjoint fixed-point iterations is based on the one-shot method
[9], which has been successful for reducing runtimes of many PDE-constrained optimization
problems in aerodynamics applications (e.g., [41, 25, 8]).

Algorithm 4.1. Simultaneous layer-parallel training.

1: Perform m1 state updates: \triangleleft section 3.1
for m = 1, . . . ,m1 : Um \leftarrow MGRIT(A,Um - 1,\bfittheta ,G)

2: Perform m2 adjoint updates: \triangleleft section 3.2
for m = 1, . . . ,m2 : \=Um \leftarrow MGRIT(A\bfU m1

, \=Um - 1,\bfittheta ,G\bfU m1
)

3: Assemble reduced gradient \nabla \bfittheta J,\nabla \bfW J,\nabla \bfitmu J \triangleleft (2.18),(2.19)
4: Approximate Hessians B\bfittheta ,B\bfW ,B\bfitmu and select a step size \alpha > 0
5: Network control parameter update:

\bfittheta \leftarrow \bfittheta - \alpha B - 1
\bfittheta \nabla \bfittheta J

W\leftarrow W - \alpha B - 1
\bfW \nabla \bfW J

\bfitmu \leftarrow \bfitmu - \alpha B - 1
\bfitmu \nabla \bfitmu J

6: If converged: halt
Else: go to step 1.

The simultaneous layer-parallel training approach is summarized in Algorithm 4.1. We
clarify the details of the method in the following points:

\bullet Number of state and adjoint updates m1,m2: For ``large"" m1,m2, the algorithm re-
covers the same gradient, and hence the same scheme, as that of a conventional
layer-serial gradient-based training approach but with the addition of enabled layer-
parallelism, providing runtime reductions through greater concurrency. ConsideringD

ow
nl

oa
de

d
06

/0
9/

20
 to

 1
36

.5
5.

43
.1

76
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

14 G\"UNTHER, RUTHOTTO, SCHRODER, CYR, AND GAUGER

smaller numbers of inner MGRIT iterations, e.g., m1,m2 \in \{ 1, 2\} , further reduces the
runtime of each iteration and yields the simultaneous optimization approach. In that
case, control parameter updates in step 5 are based on inexact gradient information
utilizing the most recent state and adjoint variables (un

m1
) and (\=un

m2
).

For the extreme case m1 = m2 = 1 (and appropriate Hessian approximation of quasi-
Newton type; see below), the resulting optimization iteration can be mathematically
interpreted as an approximate, reduced sequential quadratic programming (rSQP)
method with convergence analysis as presented in [41]. In [10], theoretical consid-
erations on the choice of m1,m2 are presented, which rely on the state and adjoint
residuals by searching for descent on an augmented Lagrangian function. In practice,
choosing m1,m2 to be as small as 2 has proven successful in our experience.
\bullet Hessian approximation : In order to prove convergence of the simultaneous one-shot
method on a theoretical level, the preconditioners B\bfittheta ,B\bfW ,B\bfitmu should approximate the
Hessian of an augmented Lagrangian function that involves the residual of the state
and adjoint equations (see [9] and references therein). Numerically, we approximate
the Hessian through consecutive limited-memory BFGS updates based on the current
reduced gradient (thus assuming that the residual term is small). Alternatively, one
might try to approximate the Hessian with a scaled identity matrix, which drastically
reduces computational complexity and has already proven successful in various appli-
cations of the one-shot method. It should be noted that the Hessian with respect to
W,\bfitmu can be computed directly, as it involves only the second derivative of the loss
function \ell in (2.5) and the regularizer R.
\bullet Step size selection: The step size \alpha is selected through a standard line-search procedure
based on the current value of the objective function, e.g., a backtracking line-search
satisfying the (strong) Wolfe condition (see, e.g., [49]).
\bullet Stopping criterion: Since the one-shot method targets optimality and feasibility of
the state, adjoint, and control variables simultaneously, the stopping criterion should
involve not only the norm of the reduced gradient but also the norm of the state and
adjoint residuals. In the context of network training, however, solving the optimization
problem to high accuracy is typically not desired in order to prevent overfitting. We
therefore compute a validation accuracy in each iteration of the above algorithm by
applying the current network controls to a separate validation data set. We terminate
the training, if the current network controls produce a high validation accuracy, rather
than focusing on the current residuals of the state, adjoint, and gradient norms.

5. Numerical results. We investigate the computational benefits of the simultaneous
layer-parallel training approach on three test cases. For all test cases, our focus is on the
ability to achieve speedup in training runtimes for very deep neural networks by introducing
parallelism between the layers. It is likely, though not explored here, that greater combined
speedups are possible by additionally using data-parallelism or parallelizing inside of each
layer. Further studies are required to better understand the trade-off of distributing parallel
work between layer- and data-parallelism.D

ow
nl

oa
de

d
06

/0
9/

20
 to

 1
36

.5
5.

43
.1

76
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LAYER-PARALLEL TRAINING OF DEEP RESNETS 15

(a) Peaks (b) Indian Pines (c) MNIST

Figure 3. Classes of the Peaks example (test case 1), sample band and true classes of the Indian Pines
data set (test case 2), and examples from the MNIST data set (test case 3).

5.1. Test cases.
1. Level set classification (Peaks example).

As a first step, we consider the test problem suggested in [34] for classifying grid
points into five (nonconvex) level sets of a smooth nonlinear function f : [- 3, 3]2 \rightarrow R
(Figure 3(a)). The training data set consists of s = 5000 randomly chosen points
yk \in [- 3, 3]2, k = 1, . . . , s, and standard basis vectors ck \in R5 which represent the
probability that a point yk belongs to level set i \in \{ 1, 2, 3, 4, 5\} . The goal is to train a
network to predict the correct level sets for new points in [- 3, 3]2 (validation points).
We choose a ResNet architecture with smoothed ReLU activation defined as

(5.1) \sigma (x) =

\Biggl\{
max\{ x, 0\} , | x| > 0.1,

21
2x

2 + 1
2x+ 1

40 , | x| \leq 0.1.

Also, we define the linear operations K(\cdot) at each layer to be a dense matrix repre-
sentation of the weights \bfittheta n. We choose a network depth of T = 5 discretized with up
to N = 2048 layers and a network width of 8 such that un \in R8 \forall n = 0, . . . , N . In
order to map the data set to the network width, we choose L\mathrm{i}\mathrm{n} to be a dense R8\times 2

matrix, whose entries are learned alongside the network parameters, followed by an
initial application of the activation function.

2. Hyperspectral image segmentation (Indian Pines).
In this test case, we consider a soil segmentation problem based on a hyperspectral
image data set. The input data consists of hyperspectral bands over a single landscape
in Indiana, USA (Indian Pines data set [3]) with 145\times 145 pixels. For each pixel, the
data set contains 220 spectral reflectance bands which represent different portions of
the electromagnetic spectrum in the wavelength range 0.4 - 2.5 \cdot 10 - 6. The goal is to
train a network to assign each pixel of the scene to one of 16 class labels that represent
the type of land-cover present at that pixel (such as alfalfa, corn, soybean, wheat, etc.);
see Figure 3(b).
We use the spectral bands of s = 1000 randomly chosen pixel points yk \in R220, k =
1, . . . , s, together with their corresponding class probability vectors ck \in R16 (unit
vectors) for training. The network architecture is a ResNet with smoothed ReLU
activation (i.e., \sigma (x) = max\{ 0, x\} , smoothed around zero) and defines the linearD

ow
nl

oa
de

d
06

/0
9/

20
 to

 1
36

.5
5.

43
.1

76
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

16 G\"UNTHER, RUTHOTTO, SCHRODER, CYR, AND GAUGER

operations K(\cdot) at each layer to be a dense matrix representation of the weights \bfittheta n.
We choose a network depth of T = 20 discretized with up to N = 2048 layers and a
network width of 220 channels, corresponding to the 220 reflectance bands. The initial
operator L\mathrm{i}\mathrm{n} is chosen to be the identity.

3. MNIST image classification (MNIST).
As a final example, we consider the now classic MNIST [47] test case for classification
of handwritten digits encoded in a 28 \times 28 grayscale image (Figure 3(c)). Our objec-
tive for this test case is to demonstrate the scalability of the layer-parallel approach
over an increasing number of layers. While we obtain reasonable validation accuracy,
the objective is not to develop an optimal ResNet to solve this problem. Further,
we obtained the timings below with our own straightforward implementation of con-
volutions, ensuring compatible layer-to-layer propagators with XBraid for our initial
tests. Future work will use a fast convolution library, which will provide a substantial
speedup to both the serial and layer-parallel codes.
For the weak scaling runs below, we use a ResNet architecture with tanh activation
and define internal layers by the linear operator K(\cdot) using 8 convolution kernels of
width 3; we used similar architectures in [35, 34]. This yields a weight tensor of size
R3\times 3\times 8\times 8 at each layer. The parameters to be trained are in R28\times 28 at each layer. The
strong scaling training tests below used four convolutional kernels to reduce memory
requirements. The network is defined to have a depth of T = 5 and is discretized with
up to N = 2048 layers. The initial operator L\mathrm{i}\mathrm{n} is chosen to be the identity copied
over the eight (or four) convolutional kernels.

The Peaks and Indian Pines computations were performed on the RHRK cluster El-
wetritsch II at TU Kaiserslautern. Elwetritsch II has 485 nodes based on Haswell (2 \times 8
cores, 64GB) and Skylake (2 \times 12 cores, 96GB) architectures. The computations for the
MNIST results were performed on the Skybridge capacity cluster at Sandia National Labora-
tories. Skybridge is a Cray cluster containing 1848 nodes with two 8-core Intel 2.6 GHz Sandy
Bridge processors, 64GB of RAM per node, and an Infiniband interconnect. The source code
is available online [31].

5.2. Layer-parallel scaling and performance validation. First, we investigate the perfor-
mance of the layer-parallel MGRIT propagation for a single objective function and gradient
evaluation. Here, we keep the network weights fixed and propagate a batch of examples of sizes
s = 5000, 1000, 500 for the Peaks, Indian Pines, and MNIST test cases, respectively, through
the network. We choose a coarsening factor of c = 4 to set up a hierarchy of ever coarser
layer-grids to employ the multigrid scheme. This coarsening strategy did not encounter any
stability issues for forward Euler on the coarser layer-grids.

Figure 4 shows the convergence history of the MGRIT iterations for two different problem
sizes using N = 256 and N = 2048 layers. We monitor the relative drop of the state and
adjoint residual norms and observe fast convergence for all test cases that is independent of the
number of layers. Note that the performed multigrid iterations themselves are not dependent
on the number of cores used for parallelization, making Figure 4 independent of the parallel
distribution. Next, we report scaling results varying the number of cores.

We investigate scaling results for the layer-parallel MGRIT scheme and compare runtimesD
ow

nl
oa

de
d

06
/0

9/
20

 to
 1

36
.5

5.
43

.1
76

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LAYER-PARALLEL TRAINING OF DEEP RESNETS 17

10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101

0 1 2 3 4 5

re
l.
re
si
du

al

iteration

N = 256 state
N = 256 adjoint
N = 2048 state
N = 2048 adjoint

(a) Peaks example

10−12

10−10

10−8

10−6

10−4

10−2

100

0 1 2 3 4

re
l.
re
si
du

al

iteration

N = 256 state
N = 256 adjoint
N = 2048 state
N = 2048 adjoint

(b) MNIST

Figure 4. Convergence history of MGRIT solving the state and adjoint equations for N = 256 and N = 2048
layers. The MGRIT scheme achieves fast convergence independent of the number of layers. (The corresponding
figure for the Indian Pines test case shows the same quantitative behavior and hence is omitted here.)

to conventional serial-in-layer forward and backward propagation. Figure 5 presents a weak-
scaling study for the layer-parallel MGRIT scheme. Here, we double the number of layers
as well as the number of compute cores while keeping the ratio N/\#cores = 4 fixed, such
that each compute unit processes 4 layers. Runtimes are measured for one objective func-
tion and gradient evaluation, using a relative stopping criterion of five orders of magnitude
for the MGRIT residual norms. Note that the layer-serial data points have been added for
comparison, even though they are executed on only one core. For the layer-serial propagation,
doubling the number of layers leads to a doubling in runtime. The layer-parallel MGRIT
approach, however, yields nearly constant runtimes independent of the problem size. The
resulting speedups are reported in Table 1. Since the layer-parallel MGRIT approach removes
the linear runtime scale of the conventional serial-layer propagation, resulting speedups in-
crease linearly, with the problem size yielding up to a factor of 16\times for the MNIST case using
2048 layers and 512 cores. Further speedup can be expected when considering ever more layers
(and computational resources).

A strong scaling study is presented in Figure 6 for various numbers of layers. Here,
we keep the problem sizes fixed and measure the time-to-solution for one gradient evaluation,
with MGRIT for increasing numbers of computational resources. It shows good, strong scaling
behavior for all test cases, independent of the numbers of layers. The cross-over point where
the layer-parallel MGRIT approach shows speedup over the layer-serial propagation is around
16 cores for all cases.

5.3. Simultaneous layer-parallel training validation. Next, we investigate the simultane-
ous layer-parallel training, using m1 = m2 = 2 layer-parallel MGRIT iterations in each outer
training iteration (see Algorithm 4.1). The Hessian approximations B\bfittheta , B\bfW , B\bfitmu are computed
by successive limited-memory BFGS updates based on the current gradient \nabla (\bfittheta ,\bfW ,\bfitmu)J . We
compare runtimes of the simultaneous layer-parallel training with a conventional layer-serial
training approach, while choosing the same Hessian as well as the same initial network pa-
rameters for both approaches. However, we tune the optimization hyperparameters (such as
regularization parameters, step size selection, etc.) separately for both schemes in order toD

ow
nl

oa
de

d
06

/0
9/

20
 to

 1
36

.5
5.

43
.1

76
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

18 G\"UNTHER, RUTHOTTO, SCHRODER, CYR, AND GAUGER

0

200

400

600

800

1000

1200

1400

256 512 1024 2048

64 128 256 512

ti
m
e
(s
ec
)

layers

cores

Layer-parallel
Layer-serial

(a) Indian Pines

0

500

1000

1500

2000

2500

256 512 1024 2048

64 128 256 512

ti
m
e
(s
ec
)

layers

cores

Layer-parallel
Layer-serial

(b) MNIST

Figure 5. Runtime comparison of a layer-parallel gradient evaluation with layer-serial forward and backward
propagation. The layer-parallel approach yields nearly constant runtimes for increasing problem sizes and
computational resources. (The corresponding figure for the Peaks test case shows the same quantitative behavior
and hence is omitted here.)

Table 1
Runtime and speedup of layer-parallel gradient evaluation over layer-serial propagation.

Test case \#Layers \#Cores Serial Parallel Speedup

Peaks 256 64 1.8 sec 1.2 sec 1.5
512 128 3.7 sec 1.5 sec 2.5
1024 256 7.1 sec 1.6 sec 4.3
2048 512 13.9 sec 1.8 sec 7.7

Indian Pines 256 64 157.1 sec 77.6 sec 2.0
512 128 311.6 sec 94.5 sec 3.3
1024 256 624.0 sec 102.6 sec 6.1
2048 512 1248.0 sec 120.6 sec 10.3

MNIST 256 64 272.3 sec 79.5 sec 3.4
512 128 545.3 sec 113.3 sec 4.8
1024 256 1095.2 sec 104.0 sec 10.5
2048 512 2193.5 sec 137.3 sec 16.0

find the best setting that reaches a prescribed validation accuracy with the least iterations
and minimum runtime.

For the Peaks example, we train a network with N = 1024 layers distributed onto 256
compute cores, and for the Indian Pines data set and the MNIST case we choose N = 512
layers distributed onto 128 compute cores, giving 4 layers per processor in all cases. Figure 7
plots the training history over iteration counts (top) as well as runtime (bottom). We validate
from the top figures that both approaches reach comparable performance in terms of training
results (optimization iteration counts, training loss, and validation accuracy). Hence, reducing
the accuracy of the inner multigrid iterations for solving the state and adjoint equations
within a simultaneous training framework does not deteriorate the training behavior. But
each iteration of the simultaneous layer-parallel approach is much faster than for the layer-
serial approach due to the layer-parallelization and the reduced state and adjoint accuracies.D

ow
nl

oa
de

d
06

/0
9/

20
 to

 1
36

.5
5.

43
.1

76
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LAYER-PARALLEL TRAINING OF DEEP RESNETS 19

1

2

4

8

16

2 4 8 16 32 64 128 256 512

ti
m
e
(s
ec
)

cores

N = 256
N = 512
N = 1024
N = 2048

(a) Peaks example

64

128

256

512

1024

2 4 8 16 32 64 128 256 512

ti
m
e
(s
ec
)

cores

N = 256
N = 512
N = 1024
N = 2048

(b) Indian Pines

Figure 6. Strong scaling study for a layer-parallel gradient evaluation for various problem sizes from
N = 256 to N = 2048 layers. Corresponding serial runtimes are indicated by horizontal dashed lines. The
cross-over point where the layer-parallel approach yields speedup over the layer-serial propagation lies around
16 cores. (The corresponding figure for the MNIST test case shows the same quantitative behavior, and has
hence been omitted here.)

Therefore, the overall runtime for reaching the same final training result is reduced drastically
(bottom figures). Runtime speedups are reported in Table 2. While these results have been
computed for selected fixed N , we expect the speedup to scale linearly with increasing numbers
of layers, similar to the observation in Table 1.

6. Conclusion. In this paper, we provide a proof-of-concept for layer-parallel training of
deep residual neural networks (ResNets). The similarity between training ResNets and optimal
control of nonlinear time-dependent differential equations motivates us to use parallel-in-time
methods that are popular in many engineering applications. The method developed is based
on nonlinear multigrid methods and introduces a new form of parallelism across layers.

We demonstrate two options to benefit from the layer-parallel approach. First, the nonlin-
ear multigrid reduction in time (MGRIT) method can be used to replace forward and backward
propagations in existing training algorithms, including for stochastic approximation methods
such as stochastic gradient descent (SGD). In our experiments, this leads to speedup over se-
rial implementations when using more than 16 compute cores. Second, additional savings can
be obtained through the simultaneous layer-parallel training, which uses only inexact forward
and backward propagations.

While the reported speedups might seem small in terms of parallel efficiency, these reduc-
tions can be of significant importance when considering large overall training runtimes. When
bare training runtimes are in the order of days, any runtime reduction is appreciated, as long
as computational resources are available. Further, since training a network typically involves
a careful choice of hyperparameters, faster training runtimes will enable faster hyperparam-
eter optimization and thus eventually lead to better training results in general. Lastly, we
mention that such efficiencies for multigrid-in-time methods are not uncommon [20], where
the nonintrusiveness of MGRIT contributes to the seemingly low efficiency, as does the fact
that we are defining the efficiency of MGRIT with respect to an optimal serial algorithm. If
the efficiency were defined with respect to MGRIT using one core, then the efficiencies would
be much higher.

D
ow

nl
oa

de
d

06
/0

9/
20

 to
 1

36
.5

5.
43

.1
76

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

20 G\"UNTHER, RUTHOTTO, SCHRODER, CYR, AND GAUGER

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

0 50 100 150 200 250 300
0

20

40

60

80

100

tr
ai
ni
ng

lo
ss

va
lid

at
io
n
ac
cu
ra
cy

(%
)

iteration

Simultaneous layer-parallel
Layer-serial reference

(a) Peaks: Training over iteration counts

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 50 100 150 200 250 300 350
0
10
20
30
40
50
60
70
80

tr
ai
ni
ng

lo
ss

va
lid

at
io
n
ac
cu
ra
cy

(%
)

iteration

Simultaneous layer-parallel
Layer-serial reference

(b) Indian Pines: Training over iteration counts

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

0 1000 2000 3000 4000
0

20

40

60

80

100

tr
ai
ni
ng

lo
ss

va
lid

at
io
n
ac
cu
ra
cy

(%
)

compute time (sec)

Simultaneous layer-parallel
Layer-serial reference

(c) Peaks: Training over time

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 5 10 15 20 25 30 35 40 45
0
10
20
30
40
50
60
70
80

tr
ai
ni
ng

lo
ss

va
lid

at
io
n
ac
cu
ra
cy

(%
)

compute time (hours)

Simultaneous layer-parallel
Layer-serial reference

(d) Indian Pines: Training over time

Figure 7. Training loss (solid lines) and validation accuracy (dashed lines) over training iterations (top) and
compute time (bottom). For the layer-parallel training, each core processes four layers. The simultaneous layer-
parallel approach reaches training results comparable to a layer-serial approach within much less computational
time. (The corresponding figure for the MNIST test case shows the same quantitative behavior, and has hence
been omitted here.)

Table 2
Runtime speedup of simultaneous layer-parallel training over layer-serial training.

Test case N \#Cores Layer-serial Layer-parallel Speedup

Peaks example 1024 256 4096 sec 683 sec 6.0
Indian Pines 512 128 2623 min 597 min 4.4
MNIST 512 128 619 min 71 min 8.5

Motivated by these first promising results, we will investigate the use of layer-parallel
training for more challenging learning tasks, including more complex image-recognition prob-
lems. Further reducing the memory footprint of our algorithm in those applications motivates
the use of reversible networks arising from hyperbolic systems [13]. A challenge arising here
is the interplay of MGRIT and hyperbolic systems. Lastly, we note that while the current
work focused on algorithmic development, it could nonetheless benefit greatly from integration
with a more optimized code such as TensorFlow or Chainer. This is planned for future work.D

ow
nl

oa
de

d
06

/0
9/

20
 to

 1
36

.5
5.

43
.1

76
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LAYER-PARALLEL TRAINING OF DEEP RESNETS 21

An interesting topic concerning the interplay of existing codes with MGRIT is to develop
strategies that handle more complicated layer architectures, such as pooling and connector
layers. Here, we plan on leveraging previous work on adaptive spatial coarsening/refinement
in MGRIT where the problem size at each time step can change.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al., Tensorflow: A system for large-scale machine learning, in Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI '16), Savannah, GA,
2016, pp. 265--283.

[2] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from Data: A Short Course, AML-
Book, New York, NY, 2012.

[3] M. F. Baumgardner, L. L. Biehl, and D. A. Landgrebe, 220 Band AVIRIS Hyperspectral Image
Data Set: June 12, 1992, Indian Pine Test Site 3, Purdue University Research Repository, 2015,
https://doi.org/10.4231/R7RX991C.

[4] Y. Bengio, Learning deep architectures for AI, Found. Trends Mach. Learn., 2 (2009), pp. 1--127.
[5] G. Biros and O. Ghattas, Parallel Lagrange--Newton--Krylov--Schur methods for PDE-constrained

optimization: Part I: The Krylov--Schur solver, SIAM J. Sci. Comput., 27 (2005), pp. 687--713,
https://doi.org/10.1137/S106482750241565X.

[6] A. Bordes, S. Chopra, and J. Weston, Question Answering with Subgraph Embeddings, preprint,
https://arxiv.org/abs/1406.3676v3, 2014.

[7] A. Borz\`{\i} and V. Schulz, Computational Optimization of Systems Governed by Partial Differential
Equations, Comput. Sci. Eng. 8, SIAM, 2012, https://doi.org/10.1137/1.9781611972054.

[8] T. Bosse, N. Gauger, A. Griewank, S. G\"unther, L. Kaland, C. Kratzenstein, L. Lehmann,
A. Nemili, E. \"Ozkaya, and T. Slawig, Optimal design with bounded retardation for problems with
non-separable adjoints, in Trends in PDE Constrained Optimization, Internat. Ser. Numer. Math.
165, Birkh\"auser/Springer, 2014, pp. 67--84.

[9] T. Bosse, N. Gauger, A. Griewank, S. G\"unther, and V. Schulz, One-shot approaches to design op-
timization, in PDE Constrained Optimization, Internat. Ser. Numer. Math. 165, Birkh\"auser/Springer,
2014, pp. 43--66.

[10] T. Bosse, L. Lehmann, and A. Griewank, Adaptive sequencing of primal, dual, and design steps in
simulation based optimization, Comput. Optim. Appl., 57 (2014), pp. 731--760.

[11] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31 (1977), pp. 333--
390.

[12] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, 2nd ed., SIAM, 2000,
https://doi.org/10.1137/1.9780898719505.

[13] B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham, Reversible architectures
for arbitrarily deep residual neural networks, in Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18), New Orleans, LA, 2018, pp. 2811--2818.

[14] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, Neural Ordinary Differential Equa-
tions, preprint, https://arxiv.org/abs/1806.07366, 2018.

[15] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, Natural
language processing (almost) from scratch, J. Mach. Learn. Res., 12 (2011), pp. 2493--2537, http:
//www.jmlr.org/papers/v12/collobert11a.html.

[16] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior,
P. Tucker, K. Yang, Q. V. Le, and A. Y. Ng, Large scale distributed deep networks, in Ad-
vances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K.
Q. Weinberger, eds., Curran Associates, Inc., 2012, pp. 1223--1231.

[17] V. A. Dobrev, Tz. Kolev, N. A. Petersson, and J. B. Schroder, Two-level convergence theory
for multigrid reduction in time (MGRIT), SIAM J. Sci. Comput., 39 (2017), pp. S501--S527, https:
//doi.org/10.1137/16M1074096.

D
ow

nl
oa

de
d

06
/0

9/
20

 to
 1

36
.5

5.
43

.1
76

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.4231/R7RX991C
https://doi.org/10.1137/S106482750241565X
https://arxiv.org/abs/1406.3676v3
https://doi.org/10.1137/1.9781611972054
https://doi.org/10.1137/1.9780898719505
https://arxiv.org/abs/1806.07366
http://www.jmlr.org/papers/v12/collobert11a.html
http://www.jmlr.org/papers/v12/collobert11a.html
https://doi.org/10.1137/16M1074096
https://doi.org/10.1137/16M1074096

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

22 G\"UNTHER, RUTHOTTO, SCHRODER, CYR, AND GAUGER

[18] W. E, A proposal on machine learning via dynamical systems, Comm. Math. Statist., 5 (2017), pp. 1--11,
https://doi.org/10.1007/s40304-017-0103-z.

[19] R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel
time integration with multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C635--C661, https://doi.org/
10.1137/130944230.

[20] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, J. B. Schroder, and S. Vande-
walle, Multigrid methods with space--time concurrency, Comput. Vis. Sci., 18 (2017), pp. 123--143.

[21] R. D. Falgout, T. A. Manteuffel, B. O'Neill, and J. B. Schroder, Multigrid reduction in time
for nonlinear parabolic problems: A case study, SIAM J. Sci. Comput., 39 (2017), pp. S298--S322,
https://doi.org/10.1137/16M1082330.

[22] M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time Domain De-
composition, T. Carraro, M. Geiger, S. K\"orkel, and R. Rannacher, eds., Springer, 2015, pp. 69--114.

[23] M. J. Gander, S. G\"uttel, and M. Petcu, A nonlinear ParaExp algorithm, in Domain Decomposition
Methods in Science and Engineering XXIV, P. E. Bj{\e}rstad, S. C. Brenner, L. Halpern, H. H. Kim,
R. Kornhuber, T. Rahman, and O. B. Widlund, eds., Springer International Publishing, 2018, pp. 261--
270.

[24] M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method,
SIAM J. Sci. Comput., 29 (2007), pp. 556--578, https://doi.org/10.1137/05064607X.

[25] E. \"Ozkaya and N. Gauger, Single-step one-shot aerodynamic shape optimization, in Optimal Control
of Coupled Systems of Partial Differential Equations, Internat. Ser. Numer. Math. 158, Birkh\"auser
Basel, 2009, pp. 191--204.

[26] M. B. Giles and N. A. Pierce, An introduction to the adjoint approach to design, Flow, Turbulence
and Combustion, 65 (2000), pp. 393--415.

[27] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, The reversible residual network: Backpropaga-
tion without storing activations, in Advances in Neural Information Processing Systems 30, I. Guyon,
U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds., Curran
Associates, Inc., 2017, pp. 2211--2221.

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016.
[29] S. G\"otschel and M. L. Minion, An Efficient Parallel-in-Time Method for Optimization with Parabolic

PDEs, preprint, http://arxiv.org/abs/1901.06850, 2019.
[30] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic

Differentiation, SIAM, 2008.
[31] S. G\"unther et al., Layer-Parallel Deep Residual Learning Package, https://github.com/steffi7574/

LayerParallelLearning.
[32] S. G\"unther, N. R. Gauger, and J. B. Schroder, A non-intrusive parallel-in-time adjoint solver with

the XBraid library, Comput. Vis. Sci., 19 (2018), pp. 85--95.
[33] S. G\"unther, N. R. Gauger, and J. B. Schroder, A non-intrusive parallel-in-time approach for

simultaneous optimization with unsteady PDEs, Optim. Methods Software, 34 (2019), pp. 1306--1321.
[34] E. Haber and L. Ruthotto, Stable architectures for deep neural networks, Inverse Probl., 34 (2017),

014004, https://doi.org/10.1088/1361-6420/aa9a90.
[35] E. Haber, L. Ruthotto, E. Holtham, and S.-H. Jun, Learning across scales---A multiscale method

for convolution neural networks, in Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI-18), New Orleans, LA, 2018, pp. 3142--3148, https://aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/16580.

[36] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur, G. Ganger, and P. Gib-
bons, Pipedream: Fast and Efficient Pipeline Parallel DNN Training, preprint, https://arxiv.org/
abs/1806.03377, 2018.

[37] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 2016, pp. 770--
778.

[38] K. He, X. Zhang, S. Ren, and J. Sun, Identity mappings in deep residual networks, in Computer
Vision---ECCV 2016, Lecture Notes in Comput. Sci. 9908, B. Leibe, J. Matas, N. Sebe, M. Welling,
eds., Springer, 2016, pp. 630--645.

D
ow

nl
oa

de
d

06
/0

9/
20

 to
 1

36
.5

5.
43

.1
76

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1007/s40304-017-0103-z
https://doi.org/10.1137/130944230
https://doi.org/10.1137/130944230
https://doi.org/10.1137/16M1082330
https://doi.org/10.1137/05064607X
http://arxiv.org/abs/1901.06850
https://github.com/steffi7574/LayerParallelLearning
https://github.com/steffi7574/LayerParallelLearning
https://doi.org/10.1088/1361-6420/aa9a90
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16580
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16580
https://arxiv.org/abs/1806.03377
https://arxiv.org/abs/1806.03377

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LAYER-PARALLEL TRAINING OF DEEP RESNETS 23

[39] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, et al., Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups, IEEE Signal Process. Mag., 29 (2012), pp. 82--97.

[40] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, Firecaffe: Near-linear acceleration
of deep neural network training on compute clusters, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, 2016, pp. 2592--2600.

[41] K. Ito, K. Kunisch, V. Schulz, and I. Gherman, Approximate nullspace iterations for KKT systems,
SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1835--1847, https://doi.org/10.1137/080724952.

[42] S. Jean, K. Cho, R. Memisevic, and Y. Bengio, On Using Very Large Target Vocabulary for Neural
Machine Translation, preprint, https://arxiv.org/abs/1412.2007v2, 2014.

[43] J. Keuper and F.-J. Preundt, Distributed training of deep neural networks: Theoretical and practi-
cal limits of parallel scalability, in Proceedings of the 2nd Workshop on Machine Learning in High
Performance Computing Environments, IEEE Press, 2016, pp. 19--26.

[44] A. Krizhevsky, I. Sutskever, and G. Hinton, Imagenet classification with deep convolutional neural
networks, in Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L.
Bottou, and K. Q. Weinberger, eds., Curran Associates, Inc., 2012, pp. 1097--1105.

[45] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521 (2015), pp. 436--444.
[46] Y. LeCun, B. E. Boser, and J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, and

L. D. Jackel, Handwritten digit recognition with a back-propagation network, in Advances in Neural
Information Processing Systems 2, Morgan-Kaufmann 1990, pp. 396--404.

[47] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proc. IEEE, 86 (1998), pp. 2278--2324.

[48] Y. Lu, A. Zhong, Q. Li, and B. Dong, Beyond Finite Layer Neural Networks: Bridging Deep Archi-
tectures and Numerical Differential Equations, preprint, https://arxiv.org/abs/1710.10121, 2017.

[49] J. Nocedal and S. Wright, Numerical Optimization, 2nd ed., Springer Science+Business Media, 2006.
[50] J. B. Schroder, Parallelizing over Artificial Neural Network Training Runs with Multigrid, Tech. re-

port LLNL-JRNL-736173, Lawrence Livermore National Laboratory; preprint, https://arxiv.org/abs/
1708.02276, 2017.

[51] U. Trottenberg, C. Oosterlee, and A. Sch\"uller, Multigrid, Academic Press, 2001.
[52] Q. Wang, P. Moin, and G. Iaccarino, Minimal repetition dynamic checkpointing algorithm for un-

steady adjoint calculation, SIAM J. Sci. Comput., 31 (2009), pp. 2549--2567, https://doi.org/10.1137/
080727890.

[53] XBraid: Parallel Time Integration with Multigrid, http://llnl.gov/casc/xbraid.
[54] J. C. Ziems and S. Ulbrich, Adaptive multilevel inexact SQP methods for PDE-constrained optimization,

SIAM J. Optim., 21 (2011), pp. 1--40, https://doi.org/10.1137/080743160.

D
ow

nl
oa

de
d

06
/0

9/
20

 to
 1

36
.5

5.
43

.1
76

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/080724952
https://arxiv.org/abs/1412.2007v2
https://arxiv.org/abs/1710.10121
https://arxiv.org/abs/1708.02276
https://arxiv.org/abs/1708.02276
https://doi.org/10.1137/080727890
https://doi.org/10.1137/080727890
http://llnl.gov/casc/xbraid
https://doi.org/10.1137/080743160

	Introduction
	Deep learning as a dynamic optimal control problem
	Optimal control formulation
	Discretization of the optimal control problem
	Necessary optimality conditions

	Layer-parallel multigrid approach
	Multigrid across layers for forward propagation
	MGRIT using full approximation scheme

	Multigrid across layers for backpropagation
	Nonintrusive implementation

	Simultaneous layer-parallel training
	Numerical results
	Test cases
	Layer-parallel scaling and performance validation
	Simultaneous layer-parallel training validation

	Conclusion

